CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis
نویسندگان
چکیده
Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21.
منابع مشابه
Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids
BACKGROUND & AIMS Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS Pl...
متن کاملTargeting viperin improves diet-induced glucose intolerance but not adipose tissue inflammation
Viperin is an interferon-inducible antiviral protein, responsible for antiviral response to a variety of viral infections. Here, we show that silencing viperin by antisense oligonucleotides (ASO) protects against diet-induced glucose intolerance, and yet exacerbates adipose tissue inflammation. In high-fat diet-fed mice, viperin ASO improves glucose homeostasis, reduces plasma triglyceride conc...
متن کاملControl of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress
UNLABELLED BACKGROUND Endocrine FGF19 and FGF21 exert their effects on metabolic homeostasis through fibroblast growth factor receptor (FGFR) and co-factor betaKlotho (KLB). Ileal FGF19 regulates bile acid metabolism through specifically FGFR4-KLB in hepatocytes where FGFR1 is not significant. Both FGF19 and FGF21 activate FGFR1-KLB whose function predominates in adipocytes. Recent studies u...
متن کاملLuteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.
The flavonoid luteolin has various pharmacological activities. However, few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between ...
متن کاملHead Over Hepatocytes for FGF21
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that is critical for regulation of intermediary metabolism, and it is also a potential drug target for treating diabetes and other metabolic diseases. Interest in FGF21 exploded with the discovery that pharmacological administration of FGF21 to diabetic rodents and primates increased insulin sensitivity, energy expenditure, and weight ...
متن کامل